Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Neuroimage Clin ; 41: 103587, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422832

RESUMO

OBJECTIVE: Deep brain stimulation (DBS) studies have shown that stimulation of the motor segment of the thalamus based on probabilistic tractography is predictive of improvement in essential tremor (ET). However, probabilistic methods are computationally demanding, requiring the need for alternative tractography methods for use in the clinical setting. The purpose of this study was to compare probabilistic vs deterministic tractography methods for connectivity-based targeting in patients with ET. METHODS: Probabilistic and deterministic tractography methods were retrospectively applied to diffusion-weighted data sets in 36 patients with refractory ET. The thalamus and precentral gyrus were selected as regions of interest and fiber tracking was performed between these regions to produce connectivity-based thalamic segmentations, per prior methods. The resultant deterministic target maps were compared with those of thresholded probabilistic maps. The center of gravity (CG) of each connectivity map was determined and the differences in spatial distribution between the tractography methods were characterized. Furthermore, the intersection between the connectivity maps and CGs with the therapeutic volume of tissue activated (VTA) was calculated. A mixed linear model was then used to assess clinical improvement in tremor with volume of overlap. RESULTS: Both tractography methods delineated the region of the thalamus with connectivity to the precentral gyrus to be within the posterolateral aspect of the thalamus. The average CG of deterministic maps was more medial-posterior in both the left (3.7 ± 1.3 mm3) and the right (3.5 ± 2.2 mm3) hemispheres when compared to 30 %-thresholded probabilistic maps. Mixed linear model showed that the volume of overlap between CGs of deterministic and probabilistic targeting maps and therapeutic VTAs were significant predictors of clinical improvement. CONCLUSIONS: Deterministic tractography can reconstruct DBS thalamic target maps in approximately 5 min comparable to those produced by probabilistic methods that require > 12 h to generate. Despite differences in CG between the methods, both deterministic-based and probabilistic targeting were predictive of clinical improvement in ET.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Humanos , Tremor Essencial/diagnóstico por imagem , Tremor Essencial/terapia , Estimulação Encefálica Profunda/métodos , Estudos Retrospectivos , Tálamo/diagnóstico por imagem , Tremor
2.
Acta Neurochir (Wien) ; 166(1): 66, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316692

RESUMO

LITT is a minimally-invasive laser ablation technique used to treat a wide variety of intracranial lesions. Difficulties performing intraoperative mapping have limited its adoption for lesions in/near eloquent regions. In this institutional case series, we demonstrate the utility of fMRI-adjunct planning for LITT near language or motor areas. Six out of 7 patients proceeded with LITT after fMRI-based tractography determined adequate safety margins for ablation. All underwent successful ablation without new or worsening postoperative symptoms requiring adjuvant corticosteroids, including those with preexisting deficits. fMRI is an easily accessible adjunct which may potentially reduce chances of complications in LITT near eloquent structures.


Assuntos
Neoplasias Encefálicas , Terapia a Laser , Humanos , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Procedimentos Neurocirúrgicos/métodos , Terapia a Laser/métodos , Lasers
3.
Front Neurosci ; 17: 1183312, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075287

RESUMO

Late-onset Alzheimer's disease (LOAD) is a major health concern for senior citizens, characterized by memory loss, confusion, and impaired cognitive abilities. Apolipoprotein-E (ApoE) is a well-known risk factor for LOAD, though exactly how ApoE affects LOAD risks is unknown. We hypothesize that ApoE attenuation of LOAD resiliency or vulnerability has a neurodevelopmental origin via changing brain network architecture. We investigated the brain network structure in adult ApoE knock out (ApoE KO) and wild-type (WT) mice with diffusion tensor imaging (DTI) followed by graph theory to delineate brain network topology. Left and right hemisphere connectivity revealed significant differences in number of connections between the hippocampus, amygdala, caudate putamen and other brain regions. Network topology based on the graph theory of ApoE KO demonstrated decreased functional integration, network efficiency, and network segregation between the hippocampus and amygdala and the rest of the brain, compared to those in WT counterparts. Our data show that brain network developed differently in ApoE KO and WT mice at 5 months of age, especially in the network reflected in the hippocampus, amygdala, and caudate putamen. This indicates that ApoE is involved in brain network development which might modulate LOAD risks via changing brain network structures.

4.
Front Neurosci ; 17: 1178473, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954873

RESUMO

Cortico-striato-thalamo-cortical (CSTC) loops are fundamental organizing units in mammalian brains. CSTCs process limbic, associative, and sensorimotor information in largely separated but interacting networks. CTSC loops pass through paired striatal compartments, striosome (aka patch) and matrix, segregated pools of medium spiny projection neurons with distinct embryologic origins, cortical/subcortical structural connectivity, susceptibility to injury, and roles in behaviors and diseases. Similarly, striatal dopamine modulates activity in striosome and matrix in opposite directions. Routing CSTCs through one compartment may be an anatomical basis for regulating discrete functions. We used differential structural connectivity, identified through probabilistic diffusion tractography, to distinguish the striatal compartments (striosome-like and matrix-like voxels) in living humans. We then mapped compartment-specific projections and quantified structural connectivity between each striatal compartment, the globus pallidus interna (GPi), and 20 thalamic nuclei in 221 healthy adults. We found that striosome-originating and matrix-originating streamlines were segregated within the GPi: striosome-like connectivity was significantly more rostral, ventral, and medial. Striato-pallido-thalamic streamline bundles that were seeded from striosome-like and matrix-like voxels transited spatially distinct portions of the white matter. Matrix-like streamlines were 5.7-fold more likely to reach the GPi, replicating animal tract-tracing studies. Striosome-like connectivity dominated in six thalamic nuclei (anteroventral, central lateral, laterodorsal, lateral posterior, mediodorsal-medial, and medial geniculate). Matrix-like connectivity dominated in seven thalamic nuclei (centromedian, parafascicular, pulvinar-anterior, pulvinar-lateral, ventral lateral-anterior, ventral lateral-posterior, ventral posterolateral). Though we mapped all thalamic nuclei independently, functionally-related nuclei were matched for compartment-level bias. We validated these results with prior thalamostriate tract tracing studies in non-human primates and other species; where reliable data was available, all agreed with our measures of structural connectivity. Matrix-like connectivity was lateralized (left > right hemisphere) in 18 thalamic nuclei, independent of handedness, diffusion protocol, sex, or whether the nucleus was striosome-dominated or matrix-dominated. Compartment-specific biases in striato-pallido-thalamic structural connectivity suggest that routing CSTC loops through striosome-like or matrix-like voxels is a fundamental mechanism for organizing and regulating brain networks. Our MRI-based assessments of striato-thalamic connectivity in humans match and extend the results of prior tract tracing studies in animals. Compartment-level characterization may improve localization of human neuropathologies and improve neurosurgical targeting in the GPi and thalamus.

5.
Front Neurol ; 14: 1258895, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020603

RESUMO

Objective: To characterize how the proximity of deep brain stimulation (DBS) active contact locations relative to the cerebellothalamic tract (CTT) affect clinical outcomes in patients with essential tremor (ET). Background: DBS is an effective treatment for refractory ET. However, the role of the CTT in mediating the effect of DBS for ET is not well characterized. 7-Tesla (T) MRI-derived tractography provides a means to measure the distance between the active contact and the CTT more precisely. Methods: A retrospective review was conducted of 12 brain hemispheres in 7 patients at a single center who underwent 7T MRI prior to ventral intermediate nucleus (VIM) DBS lead placement for ET following failed medical management. 7T-derived diffusion tractography imaging was used to identify the CTT and was merged with the post-operative CT to calculate the Euclidean distance from the active contact to the CTT. We collected optimized stimulation parameters at initial programing, 1- and 2-year follow up, as well as a baseline and postoperative Fahn-Tolosa-Marin (FTM) scores. Results: The therapeutic DBS current mean (SD) across implants was 1.8 mA (1.8) at initial programming, 2.5 mA (0.6) at 1 year, and 2.9 mA (1.1) at 2-year follow up. Proximity of the clinically-optimized active contact to the CTT was 3.1 mm (1.2), which correlated with lower current requirements at the time of initial programming (R2 = 0.458, p = 0.009), but not at the 1- and 2-year follow up visits. Subjects achieved mean (SD) improvement in tremor control of 77.9% (14.5) at mean follow-up time of 22.2 (18.9) months. Active contact distance to the CTT did not predict post-operative tremor control at the time of the longer term clinical follow up (R2 = -0.073, p = 0.58). Conclusion: Active DBS contact proximity to the CTT was associated with lower therapeutic current requirement following DBS surgery for ET, but therapeutic current was increased over time. Distance to CTT did not predict the need for increased current over time, or longer term post-operative tremor control in this cohort. Further study is needed to characterize the role of the CTT in long-term DBS outcomes.

6.
J Med Imaging Radiat Sci ; 54(4): 699-706, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37891147

RESUMO

BACKGROUND AND PURPOSE: Cervical Spondylotic Myelopathy (CSM) is a gradually escalating spinal cord disturbance set in motion by the degenerative narrowing of the vertebral canal. Routine MRI may fail to detect the subtle early alterations of the cord. MRI Diffusion Tensor Imaging (DTI) possesses the potential to detect these changes. This study intends to estimate the potential of the DTI technique in non-stenotic & stenotic spinal canals in individuals affected with CSM. METHODOLOGY: Sixty-four subjects who met the requirements of the inclusion criteria were incorporated into the investigation. All subjects underwent routine MRI sequences in addition to DTI of the cervical spine region. Scalars such as Fractional Anisotropy (FA), besides Apparent Diffusion Coefficient (ADC), were computed at each cervical intervertebral fibrocartilaginous disc level for all subjects. DTI fiber tractography was then performed to qualitatively assess the microstructural integrity of the tracts. RESULTS: A noteworthy difference (p<0.05) was seen in the FA parameter and ADC parameter values between the stenotic and non-stenotic groups, with the non-stenotic group having a higher mean FA and a lower ADC than the stenotic group (at the level of stenosis). A significant difference in age was seen between both groups, with most of the patients in the stenotic group belonging to 40 years and above. Tractography helped in demonstrating the morphology of the fiber tracts. CONCLUSION: DTI parameters, namely FA and ADC, are sensitive to damage to the white matter and can be used to detect microstructural changes in the cord. However, standardization of the protocol is necessary when imaging the spinal canal.


Assuntos
Imagem de Tensor de Difusão , Doenças da Medula Espinal , Humanos , Adulto , Imagem de Tensor de Difusão/métodos , Constrição Patológica , Canal Medular/diagnóstico por imagem
7.
Surg Neurol Int ; 14: 194, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37404518

RESUMO

Background: Isolated inferior rectus muscle palsy is a rare entity and even more rarely induced by an anatomical conflict. We report here a clinical case of third cranial nerve (CN III) compression in its cisternal segment by an idiopathic uncal protrusion in a patient presenting an isolated inferior rectus muscle palsy. Case Description: We report a case of an anatomical conflict between the uncus and the CN III in the form of a protrusion and highly asymmetrical proximity of the uncus and asymmetrically thinned nerve diameter deviated from its straight cisternal trajectory on the ipsilateral side were supported by an altered diffusion tractography along the concerned CN III. Clinical description, review of the literature, and image analysis were done including CN III fiber reconstruction using a fused image from diffusion tensor imaging images, constructive interference in steady state, and T2-fluid-attenuated inversion recovery images on a dedicated software (BrainLAB AG). Conclusion: This case illustrates the importance of anatomical-clinical correlation in cases of CN deficits and supports the use of new neuroradiologically based interrogation methods such as CN diffusion tractography to support anatomical CN conflicts.

8.
Phys Med ; 112: 102610, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37331082

RESUMO

PURPOSE: The use of topological metrics to derive quantitative descriptors from structural connectomes is receiving increasing attention but deserves specific studies to investigate their reproducibility and variability in the clinical context. This work exploits the harmonization of diffusion-weighted acquisition for neuroimaging data performed by the Italian Neuroscience and Neurorehabilitation Network initiative to obtain normative values of topological metrics and to investigate their reproducibility and variability across centers. METHODS: Different topological metrics, at global and local level, were calculated on multishell diffusion-weighted data acquired at high-field (e.g. 3 T) Magnetic Resonance Imaging scanners in 13 different centers, following the harmonization of the acquisition protocol, on young and healthy adults. A "traveling brains" dataset acquired on a subgroup of subjects at 3 different centers was also analyzed as reference data. All data were processed following a common processing pipeline that includes data pre-processing, tractography, generation of structural connectomes and calculation of graph-based metrics. The results were evaluated both with statistical analysis of variability and consistency among sites with the traveling brains range. In addition, inter-site reproducibility was assessed in terms of intra-class correlation variability. RESULTS: The results show an inter-center and inter-subject variability of <10%, except for "clustering coefficient" (variability of 30%). Statistical analysis identifies significant differences among sites, as expected given the wide range of scanners' hardware. CONCLUSIONS: The results show low variability of connectivity topological metrics across sites running a harmonised protocol.


Assuntos
Conectoma , Adulto , Humanos , Conectoma/métodos , Reprodutibilidade dos Testes , Benchmarking , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem
9.
Neuroscience ; 521: 157-165, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37142183

RESUMO

Very recent studies on healthy individuals suggest that changes in the sensibility toward internal bodily sensations across the lifespan affect the ability to mentally represent one's body, in terms of action-oriented and nonaction-oriented body representation (BR). Little is known about the neural correlates of this relation. Here we fill this gap using the neuropsychological model provided by focal brain damage. Sixty-five patients with unilateral stroke (20 with left and 45 with right brain damage, LBD and RBD, respectively) participated in this study. Both action-oriented BR and nonaction-oriented BR were tested; interoceptive sensibility was assessed as well. First, we tested whether interoceptive sensibility predicted action-oriented BR and nonaction-oriented BR, in RBD and LBD separately. Then, a track-wise hodological lesion-deficit analysis was performed in a subsample of twenty-four patients to test the brain network supporting this relation. We found that interoceptive sensibility predicted the performances in the task tapping nonaction-oriented BR. The higher interoceptive sensibility was, the worse patients performed. This relation was associated with the disconnection probability of the corticospinal tract, the fronto-insular tract, and the pons. We expand over the previous findings on healthy individuals, supporting the idea that high levels of interoceptive sensibility negatively affect BR. Specific frontal projections and frontal u-shaped tracts may play a pivotal role in such an effect, likely affecting the development of a first-order representation of the self within the brainstem autoregulatory centers and posterior insula and of a second-order representation of the self within the anterior insula and higher-order prefrontal areas.


Assuntos
Lesões Encefálicas , Substância Branca , Humanos , Conscientização , Imagem Corporal , Encéfalo , Sensação , Frequência Cardíaca
10.
Cell Rep ; 42(5): 112480, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37163375

RESUMO

The cerebellum is essential for motor control and cognitive functioning, engaging in bidirectional communication with the cerebral cortex. The common marmoset, a small non-human primate, offers unique advantages for studying cerebello-cerebral circuits. However, the marmoset cerebellum is not well described in published resources. In this study, we present a comprehensive atlas of the marmoset cerebellum comprising (1) fine-detailed anatomical atlases and surface-analysis tools of the cerebellar cortex based on ultra-high-resolution ex vivo MRI, (2) functional connectivity and gradient patterns of the cerebellar cortex revealed by awake resting-state fMRI, and (3) structural-connectivity mapping of cerebellar nuclei using high-resolution diffusion MRI tractography. The atlas elucidates the anatomical details of the marmoset cerebellum, reveals distinct gradient patterns of intra-cerebellar and cerebello-cerebral functional connectivity, and maps the topological relationship of cerebellar nuclei in cerebello-cerebral circuits. As version 5 of the Marmoset Brain Mapping project, this atlas is publicly available at https://marmosetbrainmapping.org/MBMv5.html.


Assuntos
Callithrix , Cerebelo , Animais , Imageamento por Ressonância Magnética , Mapeamento Encefálico , Córtex Cerebelar/diagnóstico por imagem
11.
Med Image Anal ; 86: 102744, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36867912

RESUMO

Diffusion MRI is a useful neuroimaging tool for non-invasive mapping of human brain microstructure and structural connections. The analysis of diffusion MRI data often requires brain segmentation, including volumetric segmentation and cerebral cortical surfaces, from additional high-resolution T1-weighted (T1w) anatomical MRI data, which may be unacquired, corrupted by subject motion or hardware failure, or cannot be accurately co-registered to the diffusion data that are not corrected for susceptibility-induced geometric distortion. To address these challenges, this study proposes to synthesize high-quality T1w anatomical images directly from diffusion data using convolutional neural networks (CNNs) (entitled "DeepAnat"), including a U-Net and a hybrid generative adversarial network (GAN), and perform brain segmentation on synthesized T1w images or assist the co-registration using synthesized T1w images. The quantitative and systematic evaluations using data of 60 young subjects provided by the Human Connectome Project (HCP) show that the synthesized T1w images and results for brain segmentation and comprehensive diffusion analysis tasks are highly similar to those from native T1w data. The brain segmentation accuracy is slightly higher for the U-Net than the GAN. The efficacy of DeepAnat is further validated on a larger dataset of 300 more elderly subjects provided by the UK Biobank. Moreover, the U-Nets trained and validated on the HCP and UK Biobank data are shown to be highly generalizable to the diffusion data from Massachusetts General Hospital Connectome Diffusion Microstructure Dataset (MGH CDMD) acquired with different hardware systems and imaging protocols and therefore can be used directly without retraining or with fine-tuning for further improved performance. Finally, it is quantitatively demonstrated that the alignment between native T1w images and diffusion images uncorrected for geometric distortion assisted by synthesized T1w images substantially improves upon that by directly co-registering the diffusion and T1w images using the data of 20 subjects from MGH CDMD. In summary, our study demonstrates the benefits and practical feasibility of DeepAnat for assisting various diffusion MRI data analyses and supports its use in neuroscientific applications.


Assuntos
Aprendizado Profundo , Humanos , Idoso , Processamento de Imagem Assistida por Computador/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Análise de Dados
12.
Mult Scler J Exp Transl Clin ; 9(1): 20552173221147620, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814811

RESUMO

Background: The imaging g-ratio, estimated from axonal volume fraction (AVF) and myelin volume fraction (MVF), is a novel biomarker of microstructural tissue integrity in multiple sclerosis (MS). Objective: To assess axonal and myelin changes and their inter-relationship as measured by g-ratio in the optic radiations (OR) in people with MS (pwMS) with and without previous optic neuritis (ON) compared to healthy controls (HC). Methods: Thirty pwMS and 17 HCs were scanned on a 3Tesla Connectom scanner. AVF and MVF, derived from a multi-shell diffusion protocol and macromolecular tissue volume, respectively, were measured in normal-appearing white matter (NAWM) and lesions within the OR and used to calculate imaging g-ratio. Results: OR AVF and MVF were decreased in pwMS compared to HC, and in OR lesions compared to NAWM, whereas the g-ratio was not different. Compared to pwMS with previous ON, AVF and g-ratio tended to be higher in pwMS without prior ON. AVF and MVF, particularly in NAWM, were positively correlated with retinal thickness, which was more pronounced in pwMS with prior ON. Conclusion: Axonal measures reflect microstructural tissue damage in the OR, particularly in the setting of remote ON, and correlate with established metrics of visual health in MS.

13.
Cereb Cortex ; 33(7): 3319-3349, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35834308

RESUMO

The effective connectivity between 55 visual cortical regions and 360 cortical regions was measured in 171 HCP participants using the HCP-MMP atlas, and complemented with functional connectivity and diffusion tractography. A Ventrolateral Visual "What" Stream for object and face recognition projects hierarchically to the inferior temporal visual cortex, which projects to the orbitofrontal cortex for reward value and emotion, and to the hippocampal memory system. A Ventromedial Visual "Where" Stream for scene representations connects to the parahippocampal gyrus and hippocampus. An Inferior STS (superior temporal sulcus) cortex Semantic Stream receives from the Ventrolateral Visual Stream, from visual inferior parietal PGi, and from the ventromedial-prefrontal reward system and connects to language systems. A Dorsal Visual Stream connects via V2 and V3A to MT+ Complex regions (including MT and MST), which connect to intraparietal regions (including LIP, VIP and MIP) involved in visual motion and actions in space. It performs coordinate transforms for idiothetic update of Ventromedial Stream scene representations. A Superior STS cortex Semantic Stream receives visual inputs from the Inferior STS Visual Stream, PGi, and STV, and auditory inputs from A5, is activated by face expression, motion and vocalization, and is important in social behaviour, and connects to language systems.


Assuntos
Córtex Visual , Vias Visuais , Humanos , Vias Visuais/diagnóstico por imagem , Lobo Temporal , Hipocampo , Córtex Pré-Frontal , Lobo Parietal , Mapeamento Encefálico
14.
Hum Brain Mapp ; 44(4): 1309-1319, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36217737

RESUMO

The neuroanatomical circuitry of jaw muscles has been mostly explored in non-human animals. A recent rodent study revealed a novel circuit from the central amygdala (CeA) to the trigeminal motor nucleus (5M), which controls biting attacks. This circuit has yet to be delineated in humans. Ultra-high diffusion-weighted imaging data from the Human Connectome Project (HCP) allow in vivo delineation of circuits identified in other species-for example, the CeA-5M pathway-in humans. We hypothesized that the CeA-5M circuit could be resolved in humans at both 7 and 3 T. We performed probabilistic tractography between the CeA and 5M in 30 healthy young adults from the HCP database. As a negative control, we performed tractography between the basolateral amygdala (BLAT) and 5M, as CeA is the only amygdalar nucleus with extensive projections to the brainstem. Connectivity strength was operationalized as the number of streamlines between each region of interest. Connectivity strength between CeA-5M and BLAT-5M within each hemisphere was compared, and CeA-5M circuit had significantly stronger connectivity than the BLAT-5M circuit, bilaterally at both 7 T (all p < .001) and 3 T (all p < .001). This study is the first to delineate the CeA-5M circuit in humans.


Assuntos
Núcleo Central da Amígdala , Núcleo Motor do Nervo Trigêmeo , Animais , Humanos , Núcleo Central da Amígdala/diagnóstico por imagem , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Imagem de Difusão por Ressonância Magnética , Tronco Encefálico
15.
Cereb Cortex ; 33(10): 6207-6227, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36573464

RESUMO

To understand auditory cortical processing, the effective connectivity between 15 auditory cortical regions and 360 cortical regions was measured in 171 Human Connectome Project participants, and complemented with functional connectivity and diffusion tractography. 1. A hierarchy of auditory cortical processing was identified from Core regions (including A1) to Belt regions LBelt, MBelt, and 52; then to PBelt; and then to HCP A4. 2. A4 has connectivity to anterior temporal lobe TA2, and to HCP A5, which connects to dorsal-bank superior temporal sulcus (STS) regions STGa, STSda, and STSdp. These STS regions also receive visual inputs about moving faces and objects, which are combined with auditory information to help implement multimodal object identification, such as who is speaking, and what is being said. Consistent with this being a "what" ventral auditory stream, these STS regions then have effective connectivity to TPOJ1, STV, PSL, TGv, TGd, and PGi, which are language-related semantic regions connecting to Broca's area, especially BA45. 3. A4 and A5 also have effective connectivity to MT and MST, which connect to superior parietal regions forming a dorsal auditory "where" stream involved in actions in space. Connections of PBelt, A4, and A5 with BA44 may form a language-related dorsal stream.


Assuntos
Córtex Auditivo , Humanos , Córtex Auditivo/diagnóstico por imagem , Lobo Temporal , Lobo Parietal , Semântica , Idioma
16.
Neuron ; 110(22): 3820-3832.e4, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36206758

RESUMO

The habenula (Hb) is central to adaptive reward- and aversion-driven behaviors, comprising a hub for higher-order processing networks involving the prefrontal cortex (PFC). Despite an established role in preclinical models of cocaine addiction, the translational significance of the Hb and its connectivity with the PFC in humans is unclear. Using diffusion tractography, we detailed PFC structural connectivity with the Hb and two control regions, quantifying tract-specific microstructural features in healthy and cocaine-addicted individuals. White matter was uniquely impaired in PFC-Hb projections in both short-term abstainers and current cocaine users. Abnormalities in this tract further generalized to an independent sample of heroin-addicted individuals and were associated, in an exploratory analysis, with earlier onset of drug use across the addiction subgroups, potentially serving as a predisposing marker amenable for early intervention. Importantly, these findings contextualize a plausible PFC-Hb circuit in the human brain, supporting preclinical evidence for its impairment in cocaine addiction.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Habenula , Dependência de Heroína , Humanos , Transtornos Relacionados ao Uso de Cocaína/diagnóstico por imagem , Imageamento por Ressonância Magnética , Córtex Pré-Frontal/diagnóstico por imagem
17.
Front Neuroanat ; 16: 960439, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36093291

RESUMO

A dominant framework for understanding loss and recovery of consciousness in the context of severe brain injury, the mesocircuit hypothesis, focuses on the role of cortico-subcortical recurrent interactions, with a strong emphasis on excitatory thalamofugal projections. According to this view, excess inhibition from the internal globus pallidus (GPi) on central thalamic nuclei is key to understanding prolonged disorders of consciousness (DOC) and their characteristic, brain-wide metabolic depression. Recent work in healthy volunteers and patients, however, suggests a previously unappreciated role for the external globus pallidus (GPe) in maintaining a state of consciousness. This view is consistent with empirical findings demonstrating the existence of "direct" (i.e., not mediated by GPi/substantia nigra pars reticulata) GPe connections with cortex and thalamus in animal models, as well as their involvement in modulating arousal and sleep, and with theoretical work underscoring the role of GABA dysfunction in prolonged DOC. Leveraging 50 healthy subjects' high angular resolution diffusion imaging (HARDI) dataset from the Human Connectome Project, which provides a more accurate representation of intravoxel water diffusion than conventional diffusion tensor imaging approaches, we ran probabilistic tractography using extensive a priori exclusion criteria to limit the influence of indirect connections in order to better characterize "direct" pallidal connections. We report the first in vivo evidence of highly probable "direct" GPe connections with prefrontal cortex (PFC) and central thalamic nuclei. Conversely, we find direct connections between the GPi and PFC to be sparse (i.e., less likely indicative of true "direct" connectivity) and restricted to the posterior border of PFC, thus reflecting an extension from the cortical motor zones (i.e., motor association areas). Consistent with GPi's preferential connections with sensorimotor cortices, the GPi appears to predominantly connect with the sensorimotor subregions of the thalamus. These findings are validated against existing animal tracer studies. These findings suggest that contemporary mechanistic models of loss and recovery of consciousness following brain injury must be updated to include the GPe and reflect the actual patterns of GPe and GPi connectivity within large-scale cortico-thalamo-cortical circuits.

18.
Neuroimage ; 262: 119547, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-35940423

RESUMO

Age-related declines in cognitive control, an ability critical in most daily tasks, threaten individual independence. We previously showed in both older and younger adults that transcranial alternating current stimulation (tACS) can improve cognitive control, with effects observed across neural regions distant from the stimulated site and frequencies outside the stimulated range. Here, we assess network-level changes in neural activity that extend beyond the stimulated site and evaluate anatomical pathways that subserve these effects. We investigated the potential to rescue cognitive control in aging using prefrontal (F3-F4) theta (6 Hz) or control (1 Hz) tACS while older adults engaged in a cognitive control video game intervention on three consecutive days. Functional connectivity was assessed with EEG by measuring daily changes in frontal-posterior phase-locking values (PLV) from the tACS-free baseline. Structural connectivity was measured using MRI diffusion tractography data collected at baseline. Theta tACS improved multitasking performance, and individual gains reflected a dissociation in daily PLV changes, where theta tACS strengthened PLV and control tACS reduced PLV. Strengthened alpha-beta PLV in the theta tACS group correlated positively with inferior longitudinal fasciculus and corpus callosum body integrity, and further explained multitasking gains. These results demonstrate that theta tACS can improve cognitive control in aging by strengthening functional connectivity, particularly in higher frequency bands. However, the extent of functional connectivity gains is limited by the integrity of structural white matter tracts. Given that advanced age is associated with decreased white matter integrity, results suggest that the deployment of tACS as a therapeutic is best prior to advanced age.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Idoso , Envelhecimento/fisiologia , Cognição , Humanos , Rede Nervosa/diagnóstico por imagem , Estimulação Transcraniana por Corrente Contínua/métodos
19.
Neuroimaging Clin N Am ; 32(3): 491-505, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35843658

RESUMO

Human brain function is an increasingly complex framework that has important implications in clinical medicine. In this review, the anatomy of the most commonly assessed brain functions in clinical neuroradiology, including motor, language, and vision, is discussed. The anatomy and function of the primary and secondary sensorimotor areas are discussed with clinical case examples. Next, the dual stream of language processing is reviewed, as well as its implications in clinical medicine and surgical planning. Last, the authors discuss the striate and extrastriate visual cortex and review the dual stream model of visual processing.


Assuntos
Imageamento por Ressonância Magnética , Córtex Sensório-Motor , Mapeamento Encefálico/métodos , Humanos , Idioma , Imageamento por Ressonância Magnética/métodos
20.
Neuroimage ; 258: 119352, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35659999

RESUMO

To advance understanding of brain networks involved in language, the effective connectivity between 26 cortical regions implicated in language by a community analysis and 360 cortical regions was measured in 171 humans from the Human Connectome Project, and complemented with functional connectivity and diffusion tractography, all using the HCP multimodal parcellation atlas. A (semantic) network (Group 1) involving inferior cortical regions of the superior temporal sulcus cortex (STS) with the adjacent inferior temporal visual cortex TE1a and temporal pole TG, and the connected parietal PGi region, has effective connectivity with inferior temporal visual cortex (TE) regions; with parietal PFm which also has visual connectivity; with posterior cingulate cortex memory-related regions; with the frontal pole, orbitofrontal cortex, and medial prefrontal cortex; with the dorsolateral prefrontal cortex; and with 44 and 45 for output regions. It is proposed that this system can build in its temporal lobe (STS and TG) and parietal parts (PGi and PGs) semantic representations of objects incorporating especially their visual and reward properties. Another (semantic) network (Group 3) involving superior regions of the superior temporal sulcus cortex and more superior temporal lobe regions including STGa, auditory A5, TPOJ1, the STV and the Peri-Sylvian Language area (PSL) has effective connectivity with auditory areas (A1, A4, A5, Pbelt); with relatively early visual areas involved in motion, e.g., MT and MST, and faces/words (FFC); with somatosensory regions (frontal opercular FOP, insula and parietal PF); with other TPOJ regions; and with the inferior frontal gyrus regions (IFJa and IFSp). It is proposed that this system builds semantic representations specialising in auditory and related facial motion information useful in theory of mind and somatosensory / body image information, with outputs directed not only to regions 44 and 45, but also to premotor 55b and midcingulate premotor cortex. Both semantic networks (Groups 1 and 3) have access to the hippocampal episodic memory system via parahippocampal TF. A third largely frontal network (Group 2) (44, 45, 47l; 55b; the Superior Frontal Language region SFL; and including temporal pole TGv) receives effective connectivity from the two semantic systems, and is implicated in syntax and speech output.


Assuntos
Conectoma , Mapeamento Encefálico , Lobo Frontal , Humanos , Idioma , Vias Neurais , Lobo Parietal , Lobo Temporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...